

The <u>Greenhouse gas - Air Pollution INteractions and Synergies</u> (GAINS) Model: <u>Domestic Sector</u>

Pallav PUROHIT (E-mail: purohit@iiasa.at)

IIASA - Pollution Management (PM) Group, Energy, Climate and Environment (ECE) Program Strategic Partnership for the Implementation of Paris Agreement (SPIPA) India Training Session

15 April 2021

Contents

Residential and commercial sector

- o Cooking and heating
- o Diesel generators
- o Lighting

□ Non-technical sources

- o Road dust emissions
- \circ Construction

GAINS control strategy

Air quality management needs to address urban and rural areas

- While current ambient PM_{2.5} monitoring in India reveals high levels in urban areas, remote sensing, comprehensive air quality modelling and emission inventories suggest large-scale exceedances of the NAAQS also in rural areas.
- Household fuel combustion, small industries, burning of garbage and agricultural waste, etc., cause high emissions in rural areas too.
- □ Pollution from rural areas is transported into the cities (and vice versa), where it constitutes a significant share of pollution.

Source: IIASA/CEEW

Effective solutions must address all sources that contribute to PM_{2.5} formation

- A significant share of emissions still originates from sources associated with poverty and underdevelopment (i.e., solid fuel use in households and waste management practices).
- Any effective reduction of PM_{2.5} levels in ambient air and the resulting health burden needs to balance emission controls across all these source sectors.
- A focus on single sources alone will not deliver effective improvements and is likely to waste economic resources to the detriment of further economic and social development.

*Secondary particles formed in the atmosphere from agricultural NH_3 emissions through chemical reactions with SO_2 and/or NO_x emissions;

**Including Telangana

Domestic sector in GAINS

Air pollution from households

- According to a recent Global Burden of Disease (GBD) estimation, solid fuel burned for cooking accounted for 0.6 million premature deaths in 2019 in India.
 - Caused mainly by combustion of solid fuels (Fuelwood, agricultural residues, cow dung, lignite/coal, charcoal)
 - ❑ Large differences across States (≈80% households in rural West Bengal use solid fuels for cooking).
 - □ High contribution to ambient PM2.5 concentrations (≥50% in primary PM_{2.5})

Households using solid fules for cooking

Source: NFHC-5 (2019-2020) 22 STATES/UTs FROM PHASE-I

High contribution to ambient PM_{2.5} concentrations

PM_{2.5} concentration from residential and commercial sector

Source apportionment of (population-weighted) PM_{2.5} exposure - Kanpur 2018

Source: IIASA GAINS

Mapping to the GAINS structure (example)

CD-LINKS sector	CD-LINKS fuel		GAINS fuel	GAINS sector		
	Biomass	-	OS1, OS2	Residential	↓	DOM_U
	Coal	←	HC1, HC2, HC3, BC1, BC2, DC	(DOM_S)		DOM_R
Residential	Gases	←	Gas			
and	Liquids	←	MS, GSL, LPG, HF	Services		
Commercial	Electricity	←	ELE	(DOM_COM)		
	Heat	←	НТ			
	Geothermal	←	GTH	Others		
	Solar	←	STH	(DOM_OTH)		

Solid fuels use in households

Source: IEA/WEO (2020) Stated Policies Scenario

Household energy consumption for cooking

- Annual primary energy requirement for cooking
 - $APE_{cooking} = 365^*A_{fw}^*CV_{fw}$
- Annual useful energy requirement for cooking (annual)
 - $AUE_{cooking} = 365^*A_{fw}^*CV_{fw}^*\eta_{stove,fw}$
 - Calorific value of fuelwood (MJ/kg)
 - Efficiency of traditional cookstove (%)
 - Average fuelwood consumption (kg/HH/day)

- Daily useful energy requirement for cooking = 12.13 MJ/HH/Day
- An average of 138 kg of LPG is required per household per annum to meet household cooking energy needs
 - ≈9–10 LPG cylinders of 14.2 kg each in a year
 - ≈11.3 to 12.5 MJ/HH/Day

State-wise distribution of households by type of fuel used for cooking in rural and urban areas in India

Source: Census (2011)

IASA

Household energy demand for cooking

Annual primary energy demand for cooking (APE_{cooking})

$$APE_{cooking} = 365 \sum_{i=j=1}^{m,n} \frac{N_j \xi_{i,j} UE_{cooking}}{\eta_{stove,i}}$$

Where

- N_{i,j} = Number of households using ith fuel in jth State/UT
- $\xi_{i,j}$ = % of households using ith fuel in jth State/UT
- $\eta_{stove,i}$ = Efficiency of utilization of ith fuel

Data sources

- Census of India;
- NSSO;
- CSO;
- NCAER;
- Demographic and Health Survey (DHS)/IIPS

Residential–commercial sector: fuel and source structure in GAINS

Fuels	Non-specific		Three-stone	Fireplace	Stove*	Household boiler		Medium boiler	
		Lighting				Manual	Auto	Manual	Auto
Gaseous fuels	×								
Liquid fuels	×	×							
Charcoal	×								
Coal					×	×	×	×	×
Biomass									
- Fuelwood			×	×	×	×	×	×	×
- Agricultural residue			×		×		×		×
- Dung cake			×		×				

* Distinguishing cooking and heating stoves as separate categories.

^X The cross indicates the combinations defined in the GAINS model.

Mitigation measures distinguished in the residential–commercial sector in GAINS

Control option	Non-specific		Three-stone	Fireplace	Stove		Household boiler		Medium boiler	
		Lighting			Cooking	Heating	Manual	Auto	Manual	Auto
Improved	×			×	×	×	×			
New				×	×	×	x			
Fan stove					×					
Coal briquettes					×	×				
Hurricane lamp		×								
LED ^a lamp		×								
Pellets						×	×	×	×	×
Cyclone									×	×
ESP ^b						×	×	×		×

^a Light-emitting diode. ^b Electrostatic precipitator.

Kerosene lighting

 Annual kerosene consumption (AKC_{lighting}) for lighting in GAINS region "i" in year "y" is estimated by using the following ex-pression:

$$AKC_{lighting} = \left(\frac{POP_{i,y}}{HHS_{i,y}}\right) \left(1 - ELE_{i,y}\right) 365 \sum_{j=1}^{n} N_{i,j,y} h_{i,j,y} CV_k f_{i,j,y} SC_j$$

- o where
 - POP = population,
 - HHS = household size,
 - ELE = electrification rate,
 - f = share of device type "j" (either wick lamps or hurricane lanterns),
 - N = number of kerosene lamps,
 - h = daily operating hours,
 - SC = specific kerosene consumption of a device
 - CV_k = calorific value of kerosene

Diesel generators

- □ Fossil fuel-burning backup generators in developing countries produce as much energy as 700-1,000 coal-fired power stations, consume USD 50 billion in annual spending, and emit dangerous chemicals into homes and businesses.
- In 2019, DG sets accounted for 16 GW of the captive capacity in India (CEA, 2019).
 - Low capacity utilization (3%)
 - Official data only include units of ≥1 MW
- Manufacturer data indicate that total capacity could be around 72 GW and may be even as high as 90 GW with around 5-8 GW of sales annually.
- □ Given high uncertainties regarding the true extent of India's captive fleet, in particular DG sets with a capacity of <1 MW, it remains essential to improve data quality in order to set up a policy framework tailored to the captive segment's particularities and enable an adequate monitoring.

The Dirty Footprint

of the Broken Grid

The Impacts of Fossil Fuel Back-up Generators in Developing Countries

September 2019

Diesel generators (Contd...)

- □ Residential (small back-up generators)
- □ Commercial (small, medium and large BUGS)
- □ Other (small, medium and large DG sets)
 - o 30 million diesel/electric pumps

□ Data and Information gaps

- Number of diesel generators (residential, commercial, industry, agriculture, etc.) or installed capacity
- Capacity factor (3%???)
- Emission factor
 - Age (New/Old)
 - Type (Large/small)

Emissions

- □ Total emissions are determined by combination of
 - o activity levels
 - control strategies
 - o emission factors

Х

□ Emissions

$$E_{i} = \sum_{j,k,m} E_{i,j,k,m} = \sum_{j,k,m} A_{i,j,k} ef_{i,j,k} (1 - eff_{m}) X_{i,j,k,m}$$

- i,j,k,m : Country, sector, fuel, abatement technology
- E_i : Emissions in country "i"
- A : Activity in a given sector
- Ef : "Raw gas" emission factor
- Eff_m : Reduction efficiency of the abatement option "m"
 - : Implementation rate of the considered abatement measure

Cost calculations in GAINS

C = Iann + OMfix + OMvar

Where lann =
$$I \times \left[\frac{(1+r)^{T_m} \times r}{(1+r)^{T_m} - 1} \right]$$

- All costs in constant Euro 2015
- Net of taxes
- Annual costs method
- Costs based on international investment and operating experience
- Includes common- and country-specific components
- Three levels of discount rate: social (4%), business (10%), private (20%)

Air pollutant emission control costs

- Air pollution emission control costs accounted for about 0.7% of the GDP in 2015. This share will increase to 1.4-1.7% of GDP in 2030. More than 80% of total costs emerged for mobile sources.
- In 2050, with an almost 10-fold increase in GDP, air pollution controls will consume 1.1-1.5% of the GDP.

Other sources: Non-exhaust emissions from transport

Non-exhaust emissions (NEE) of particulate matter (PM) from brake, tyre, road pavement, as well as resuspension of already deposited road dust.

Other sources: PM emissions from construction activities

- Source : Scraper loading /unloading/transit, Truck loading/dumping, Mud and dirt carryout
- Activity : NOF
- Sector : CONSTRUCT
- Unit : Million m^2
- Driver : Value added from service sector

GAINS Control Strategy

Application rates of abatement measures: % of capacity/activity

In-furnace control - limestone injectionLow sulphur coal (0.6 %S)

Electrostatic precipitator: 1 field

JAPAN - Heavy Duty Diesel Vehicles control (%)

What is a GAINS control strategy?

• A set of numbers (weighted averages) that tell you for each emission source to what extent which control technology is being applied

Represents what kind of technologies are used

> Represents what policies are planned or implemented, and how this changes over time

- For each technology: value is between 0% and 100%
- Sum over <u>all</u> technologies (incl. 'no control') = 100%
 - \circ Total activity is either controlled or not
 - \circ % is always relative to activity
 - For power plants activity means energy input

How do I calculate a control strategy? Example: Coal-fired power plants

STEP 1: Start with capacities: Total = 800 MW_{el}

el

50 MW_{el}

 250 MW_{el}

Step 2: Calculate fuel input per year, using

- Operating hours per year
- Conversion efficiency

250 MW_{el}

2,000 hours/yr, 30% efficiency 6.0 PJ/yr = 20%

50 MW_{el} 6,000 hours/yr, 32% efficiency 3.4PJ/yr = 11%

 500 MW_{el}

4,000 hours/yr, 35% efficiency 20.6 PJ/yr = 69%

20.6 PJ/yr = 69% e.g. flue gas desulfurization

Step 3: Determine control technology in operation

6.0 PJ/yr = 20%

3.4PJ/yr = 11%e.g. no control

The GAINS tool is available online to explore cost-effective strategies that maximize multiple benefits

Access on the Internet: <u>http://gains.iiasa.ac.at</u>

Thank you! purohit@iiasa.ac.at